• 常用
  • 百度
  • google
  • 站内搜索

AI资讯

OpenELM – 苹果开源的高效语言模型系列

  • 发布时间: 2025-3-14

OpenELM是什么

OpenELM是Apple苹果公司最新推出的系列高效开源的语言模型,包括OpenELM-270M、OpenELM-450M、OpenELM-1_1B和OpenELM-3B不同参数规模的版本(分为预训练版和指令微调版)。该大模型利用层间缩放策略在Transformer模型的每一层中进行参数的非均匀分配,以此提高模型的准确度和效率。该模型在公共数据集上进行了预训练,并且在多个自然语言处理任务上展现出了优异的性能。OpenELM的代码、预训练模型权重以及训练和评估流程全部开放,旨在促进开放研究和社区的进一步发展。

OpenELM的基本信息

参数规模:OpenELM总共有八个模型,其中四个是预训练的,四个是指令微调的,涵盖了 2.7 亿到 30 亿个参数之间的不同参数规模(270M、450M、1.1B和3B)。技术架构:OpenELM采用了基于Transformer的架构,使用了层间缩放(layer-wise scaling)策略,通过调整注意力头数和前馈网络(FFN)的乘数来实现参数的非均匀分配。该模型采用了分组查询注意力(Grouped Query Attention, GQA)代替多头注意力(Multi-Head Attention, MHA),使用SwiGLU激活函数代替传统的ReLU,以及RMSNorm作为归一化层。预训练数据:OpenELM使用了多个公共数据集进行预训练,包括RefinedWeb、deduplicated PILE、RedPajama的子集和Dolma v1.6的子集,总计约1.8万亿个token。开源许可:OpenELM的代码、预训练模型权重和训练指南都是在开放源代码许可证下发布的。此外,苹果还发布了将模型转换为 MLX 库的代码,从而在苹果设备上进行推理和微调。

OpenELM的官网入口

arXiv研究论文:OLMo模型相比,OpenELM在参数数量和预训练数据更少的情况下,准确率依然更高。